Recognition of AT-rich DNA binding sites by the MogR repressor.

نویسندگان

  • Aimee Shen
  • Darren E Higgins
  • Daniel Panne
چکیده

The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a "crossover" binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes

Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA) during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the ...

متن کامل

A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression.

Flagellar motility is an essential mechanism by which bacteria adapt to and survive in diverse environments. Although flagella confer an advantage to many bacterial pathogens for colonization during infection, bacterial flagellins also stimulate host innate immune responses. Consequently, many bacterial pathogens down-regulate flagella production following initial infection. Listeria monocytoge...

متن کامل

Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins.

In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origin recognition complex (ORC). How ORC is positioned to sites where replication initiates is unknown, because metazoan ORC binds DNA without apparent sequence specificity. Thus, additional factors might be involved in ORC positioning. Our experiments indicate that a family member of the high-mobility ...

متن کامل

Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family.

We have identified Xbp1 (XhoI site-binding protein 1) as a new DNA-binding protein with homology to the DNA-binding domain of the Saccharomyces cerevisiae cell cycle regulating transcription factors Swi4 and Mbp1. The DNA recognition sequence was determined by random oligonucleotide selection and confirmed by gel retardation and footprint analyses. The consensus binding site of Xbp1, GcCTCGA(G/...

متن کامل

Repression of dpp targets by binding of brinker to mad sites.

Signaling by decapentaplegic (Dpp), a Drosophila member of the transforming growth factor (TGF) beta superfamily of growth factors, has recently been shown to activate targets such as vestigial (vg) indirectly through negative regulation of brinker (brk). Here we show that the Brk protein functions as a repressor by binding to Dpp response elements. The Brk DNA binding activity was localized to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2009